Sectioning part: II freehand

Although a double edged razor of the type sold for shaving is best for free-hand sectioning, owing to its more stringent manufacturing controls and increased thinness, for initial attempts a single edge utility razor blade is recommended. The thicker blade and single edge contribute to a sense of safety on the part of the nervous practitioner. In either case, the process is the same. One should first toss out any thought of force or slow pace.

For this example a pine needle is firmly pressed against a glass slip with the nearly vertical thumb of one hand. The glass slip is oriented on a slight angle, such that it is in line with the arm which is owner of thumb holding the pine needle against the slide. The reason for this orientation is that it permits the other arm, and the hand which will be holding the razor is easily brought at a right angle to the other. The position of the arms being important as it is the shoulder and elbow of the blade holding arm that will be moved to make the cut. Using the long bones of the arm as something of a pendulum contributes to the smoothness of a cut section and uniformity of thickness. A chopping cut, or wrist controlled section is sure to be too thick, or horribly distorted.

With a drop of water or two introduced to the slip the needle is first trimmed to expose a cut surface. The blade is then placed so that its flat surface is against the thumbnail of the opposite hand. As the arm holding the blade is drawn backwards the blade is allowed to cut a section. Although the blade should be held firmly force should not be applied to make the cut, allow the shard edge to do the work. Any likely sections may be left of the slip or transferred to a second slip for inspection on the microscope. In either case one should not allow the sections to dry out.

I have never acquired the skill for making a good free hand section, but have managed workable results when making cursory examinations of objects I’ll later section with my B&L sledge style microtome. Here are a few images of comparatively “good” results.

One can see that I managed a reasonable thin section but failed as regards uniformity. This is not clear by examining the sections with the naked eye but is glaringly obvious on the microscope. The probable reason for this is down to my not holding the razor perfectly vertical. I’m satisfied with the work of two minutes as compared to the days labor of processing a specimen for the microtome.

Sectioning part: I Theory

It’s bound to happen sooner or later, particularly in a classroom setting where the microscope is not a chosen pursuit, one will run out of things to look at. There’s only so many things that naturally exist in a form that’s suitable for observation with the compound light microscope. Newsprint, onion skin, insect wings, pollen, pond water, and blood, are enough to occupy the interested for a lifetime while others are sure to tire much sooner. Lucky for the instructor, most pupils can be trusted with a knife.


Principles of Sectioning

Transmitted light microscopy is all about the specimens capacity to permit the passage of light from the illumination source through itself and onwards into the objective, ocular, and finally the eye. Some materials are able to permit the transmission of light, more or less, in their natural state, onion skin and Elodea leaves are great examples. Onion skin is comparatively easy to separate from the whole in a sheet one layer of cells thick and many types of Elodea form leaves that are only a single layer of cells. Other materials must be mechanically manipulated to form a suitable specimen. Insect exoskeletons may be macerated, pressed, and cleared. Blood may be smeared. Minerals may be ground. Much else in the natural world, most organic materials, may be thinly sliced.

The thinly slicing of materials as a practice is called sectioning and those materials after sectioning are called sections. An ideal section is thin and uniform with a thickness that is matched to the depth of field of the objective which is used to observe it. In practice a section is apt to be rather thicker than the depth of field but this is generally an acceptable defect provided that the section is uniform and as thin as possible. One may set themselves up for success in regards to uniformity by beginning in sectioning with small objects—a pine needle rather than a branch, the thin tip of a carrot rather than the thick root.

The thinner the section the better the resolution of the resulting visual image. When one focuses on the section the microscope may only focus on the materials that exist within the depth of field of the particular objective, all else exists outside the narrow range of the objective and obscures the image—one will not see the fuzzy and out of focus layers, they will merely lower the sharpness of the image.

Practice of Sectioning

In a professional setting specialized, and nowadays fully automated, devices take care of sectioning; a sample goes in one end as a complete object and comes out the other as a finished slide. Manual apparatus for the preparation of sections are called microtomes (micro for small and tome from the Greek through Latin and French for section) which hold the material and assist the operator in obtaining the thinest and most uniform sections possible.

Microtomes are more often than not used with specimens which have previously undergone a series of preparatory treatments. The object to be sectioned is first dissected from the whole into a manageable portion. It’s then dehydrated and fixed in alcohol to completely remove all moisture and stop all biological processes of the cells. From here the alcohol is displaced by a solvent of paraffin wax which is in turn displaced by the paraffin itself. The paraffin (or other medium) acts to enclose and infiltrate the specimen supporting both the internal and external structures of the object. Properly infiltrated specimens are preserved perfectly and may be stored indefinitely—tissue samples treated by this means have been used successfully in genetic paternity testing decades after preparation and centuries later in the case of infectious disease research!

With their cytoplasm replaced by a supportive and preservative media infiltrated specimens are placed into a microtome and sectioned with exceptionally sharp blades called microtome knives. Some microtomes make use of what’s called a chisel microtome knife which is in essence a large, wedge shaped, razor blade. In some types of microtome the blade is held in ones hand, or by the microtome and moved against the specimen. In other types of microtome the blade is stationary and the specimen is moved against the knife. The microtome knife may also take the form of a cut-throat razor (although the blades have a specific cross section that differs from a shaving razor) or even a disposable razor blade.

The individual wishing to section specimens at home need not obtain a complex and expensive microtome or exotic knife, a simple disposable razor blade and a steady hand is all that’s required. The specimen to be sectioned is held securely in place in one hand over a glass slip. A few drops of water are introduced to the slip and one then slices the specimen with a smooth and speedy motion of the razor. The water serves to maintain the integrity of the sectioned portions which would otherwise dry out in an instant and the quick motion of the blade contributes to minimal distortion.

The razors that work best for sectioning are the thin and precise type sold for use with a safety razor—look for them in the shaving aisle of the grocery. Because razors of that type have a blade on both long surfaces one is forced to hold them delicately and is not able to apply excess force with sectioning. Far from making the activity more dangerous this contributes to safety by ensuring that one is not sectioning tough and obstinate materials that will lead one to slip and slice a finger. After a few sections are made, a likely one is transferred in a drop of water to a second slip and a coverslip is introduced.


Large Format Photomicrography part: XIII

If someone was of a mind to get into large format photomicrography, I’d say go for it. I knew, and still do know, next to nothing about photography. I can do it. Sure, I’ve got a leg up in that I have some gear that does most of the work but even still, a cardboard box will do in the end. Just let it be an adventure.

What to Buy and Where

f you’re going to be getting a number of items shop around. If you buy several things, try and get them from the same source, in the end you might spend a dollar more here or there but you may well end up saving on shipping. If you’re looking for accessories, buy used. A used 4×5 film holder is always cheaper used than new, often less than $10.00 including shipping. For consumables like film, be willing to buy more than you need. A box of 50 sheets of 4×5 works out to $0.70 a sheet while a box of 25 usually ends up at over a dollar a sheet.

4×5 film: Get the cheap stuff. Don’t worry about buying the high speed stuff either, 100 ISO is fine. Amazon works but check out specialist suppliers like Freestyle Photo and B&H.

Paper: Foma. Get the stuff from wherever but buy Foma. Foma is a Czech company that makes all manner of photographic materials. They also happen to be widely available and one of the few companies that still makes a paper slow enough for contact printing on one of those old contact printers.

Chemistry: Pick a developer and know that you will form an unhealthy loyalty to that developer. I picked D76 and love it, I feel like it’s simple enough I will take a shot at making it myself. Can I use it on paper? Yes. Color film? Yes. Expired film? Yes. It’s what works for me. Whatever developer you pick will work for you, don’t stress about it. Same goes for the fixer. All developers develop, all fixers fix.  Pick up a bottle or a pack from Amazon or one of the retailers mentioned above. Then check and see if it isn’t available cheaper on Photographers Formulary.

Changing bag: Buy new. Used ones might leak light and depending on what they’re made of might be devitrifying on the inside. Just buy a new one and use it till you die. It’s going to last forever.

Daylight Tube/Tank: Buy used. My recommendation is the Color By Beseler #8912. It’s great it can do 4 sheets of 4×5, 2 5×7, or an 8×10 and only drinks an ounce and a half of chemistry a shot. If you think you won’t get the bug, and will only do one at a time get an Ilford Cibachrome daylight print tank, smaller is better but get the one that will handle the biggest size you think you’ll need.

What to Read

Anything by Steve Anchell. The Film Developing Cookbook and The Darkroom Cookbook are excellent. You may be surprised that even if you buy used neither of these books are really available for less than $20.00 and that is not at all overpriced. They’re that good. They aren’t something you’ll want to sit down and read cover to cover but they are something you’ll want to refer to again and again.

Black and White Photography by Henry Horeinstein. But you want to shoot in color? Get Horeinstein’s book. Just do it. Light is light and while color is a bit different Black and White Photography is the sort of firm soil I wish I had started out with.

Apart from that there’s tons of stuff out there on the web but it tends to be… well, there’s plenty of great stuff out there. There’s also plenty of absolute trash. Folks who will actively oppose the efforts of anyone who doesn’t pursue photography with the same goals and intents as they do love the internet. I wonder how much of that attitude is the dependent of those people who fought tooth and nail in the early days of photography to give it the imprimatur of art and how much is just the effect of the internet on otherwise lovely folks. Never mind, the less said about insufferable people the better.

Try the people on Flickr, really most folks are nice and the people who chose to associate with the Film Photography Podcast in particular are wonderful. Try the community of people at Lomography as well. There’s something in the attitude of both groups that is so positive and infectious!

In Conclusion

I hope someone out there who never thought they could try large format photomicrography, or who was despairing at only having a low resolution eyepiece camera see’s just what is possible. If you have the gear you can do it. If you have the desire and a shoebox you can do it. Dress up your science fair project, enrage your photography teacher, make a unique gift, or an intriguing photo for the mantle. Film photography is now truly a part of my microscopy and a part of my life. As long as film in being made, I’ll be shooting it.

Next time, freehand sectioning! -K

Large Format Photomicrography part: XII

One thing I’ve learned on this little project is that I’m certainly no photographer! Most of what I know of photography has been gleaned from a handful of books and a few dimly remembered classes at school so I hope anyone who is enough of photographer to call themselves one will take this next bit in the spirit in which it is intended. Photographers are crazy!


Photography is amazing, it’s a powerful, scientific medium and profound means of artistic impression. In the right hands a camera can be a paintbrush or a chisel and mallet. A camera can shout with the report of shotgun or whisper as the falling of snow. It’s not lightly that I say some of the efforts of photographers just make no sense to me, I’m referring to, of course, macrophotography. Some of the accoutrements of macrophotography make sense to me. Specialized lenses that are specifically constructed for high magnification and short working distance are perfectly reasonable in my mind. Even those macro extenders and bellows units that extend the distance from the rear element to the film plane and thereby reduce the minimum focusing distance make sense to me.

I can’t even begin to understand the motivation for some other macro accessories. There are society thread (microscope objective) to camera body adapters that I have to call absolutely insane. This is asking for a bad experience and all but ensuring the objective will be badly damaged. Then there’s so-called lens reversing adapters, or macro-reversing-rings that seam to me with my meager photographic knowledge to be an equally dangerous abuse of a camera lens. Maybe these sorts of devices are sold more for novelty than anything else, or perhaps with my microscope slide orientated vision I have trouble seeing how these are best used.

To my mind if a photographer wanted to have a crack at photographic a microscope slide they’d need a box full of macro optics and a finely controllable vertical tripod of some sort. It seems far easier to my mind to just use a microscope. No, I don’t mean a forty pound monster like the BalPlan or any expensive trinocular microscope at all. I mean a flea-market bargain or a school surplus, monocular, two objective microscope.

Large Format Small Budget

A photographer probably has access to a cut film holder and apart from that all any aspiring large format photomicrographer needs in a microscope. Everything else (not necessarily including the slide one wishes to photograph) is likely already on hand. Today, I used an Amazon shipping box and a desk lamp to get a large format negative of a pine needle section. I supported the box that acted as my camera on a ring stand but I could have used a couple stacks of books just as well, it may have even been more stable if I had!

I took my little shipping box and tapped it up with some strips of duct tape. Next, I traced the outline of my film holder on one end of the box. That done, I measured out a rectangle just under 4×5 inches which I cut out with a razor. On the opposite end of the box I cut a small hole in the center. The hole I cut in the center was only just the size of the ocular, I wanted to keep the hole small enough that I didn’t need to bother with any sort of baffle or light-seal around the eyepiece. I should have used a box a bit longer, a shoe box would have been much closer to the ideal. A sufficiently long box would provide enough extension as to be par focal with the virtual image seen by the eye at the eyepiece. Additionally it would have been a good idea to use a projection or photographic eyepiece so the real image… well lets keep it simple.

Instead of some fancy ground glass a sheet of lean with the protective cover was used but I might just as easily have used a sheet of wax paper. I didn’t bother with any light proofing or consideration for stability. A layer of fleece glued to the face of the box where the film holder would sit would be a useful improvement as would a layer of black paint on the inside of the box—good ideas if I ever find a longer box to use.

The Process

  1. Load a sheet of film into the film holder in a changing bag.
  2. Position a desk lamp with a frosted bulb on the table with the shade oriented to direct all the light downward, place it about 8 inches from the mirror of the microscope.
  3. With your eye at the eyepiece manipulate the mirror so that the light fills the field of view.
  4. Place a slide on the stage and bring the microscope to visual focus.
  5. Place the “camera” over the eyepiece and stabilize it with a bit of masking tape.
  6. Place the focusing screen (wax paper, ground glass, etc.) over the large opening.
  7. Focus the microscope such that the image on the screen is clear.
  8. Turn off the room lights (the darker the room the better, but just enough light to see is ideal).
  9. Remove the focusing screen and turn of the desk lamp without moving the lamp or “camera”.
  10. Place the loaded cut film holder over the opening of the camera and gently pull out the dark slide.
  11. Briefly turn on the lamp to make the exposure and then quickly turn it back off (exposure times up to 5 seconds are reasonable for 100 ISO film, a 40 watt bulb, and a low power objective).
  12. Carefully replace the dark slide.
  13. Process the film.

The Result

I put this whole thing together in about 15 minutes. It took me longer than that to develop the film! Here’s the scanned negative together with an edited inversion in lieu of a print.

Not bad considering I didn’t make overmuch of an attempt at being precise. I should have used a longer box or a more powerful eyepiece, something to raise the magnification enough to fill more of the frame with the specimen. I might have used a shorter box if I enjoyed the look of a circular vignette. A shorter exposure would have been good as well, the negative is very dense and the only thing that saved it was the very dark stain in the specimen. With the 40 watt bulb, 10x objective, and 5x ocular I’d wager a 2-3 second exposure would have been closer to an ideal result. Still, not bad for a microscope that I picked up for under $20.00 USD.

Next time, the wrap up! -K

Large Format Photomicrography part: XI

At this point I sort of know what I’m doing as far as large format photomicrography goes. Which is to say I can put a slide on the stage and reasonably expect to end up with a serviceable print. For anyone who’s been here through the entire series to this point it likely feels as if this has been going on forever. All told what with the demands of work, other interests, and responsibilities, on any given day when I picked up a film holder I’ve probably spent no more than an hour on the project. Between reading up on things, photographic work, operating the scanner, and making notes the whole things been rather a rush.

Forgive me then if I step back a minute and put a couple scribbles up on the ‘fridge.

Two Scanned Negatives

Two Scanned Prints

Pretending I’m A Photographer

The negative of the lilium ovary section above is a bit thin but has enough density to provide all the detail that’s present in the visual. It was a 1/15th second exposure which I was a touch concerned would be a bit too long with the lightly stained section. The negative of the zea stem, 1/8th of a second, is about right but has a defect where something (I checked later and it was a mote on the System II relay lens) obscured a portion of the negative.

I made up for the lower density on the lilium negative with a bit of a longer exposure on the contact print, I might have over-done it a bit but I’m not unhappy. With the significantly more dense negative of the zea I used what I felt would be a long enough exposure for the contact print, just under two minutes. If I had the presence of mind to I might have dodged the mote while I made the contact print. I expect I’ll give that a try if I ever make a second print from that negative.

With photomicrographs large format really opens up the possibilities for the microscopist. In this the day of digital cameras and desktop photo manipulation one can capture an image with an extensive depth of field and an enormous field of view. Their isn’t really a way to expand the depth of field for the chemical photographer short of better objectives. The field of view can be greatly expanded by making the switch from the classic—notably called miniature historically—35mm format to a medium format 120 film, or low end large format like 4×5. From there the step up to 8×10 would mean capturing the zea stem with a 20x objective or the entire lilium ovary with a 10x. Considering that it’s somewhat strange that in the large format photomicrography did not last quite so long as 35mm, which oddly enough still has a presence in electron microscopy to this day.

Up to this point I’ve made use of standard equipment. Earlier I theorized in an off hand way about how one could knock together a 4×5 camera for a basic monocular microscope without too much trouble. For my next trick, I’ll give that a shot! The target audience would be someone who happens to have a microscope and a friend who shoots 4×5, or someone who shoots 4×5 and wants to give extreme macro photography (photomicrography) as go. I’ll skip over the business of developing the negative, as that grounds been covered, and focus on seeing if I can get a negative at all with a shoebox and a few odds and ends.

Large Format Photomicrography part: X

For absolutely silly reasons I’ve done this a bit out of order. By all rights I should have exposed and processed my first contact print in my improvised darkroom using open trays. Under the light of my spray painted night light “safe light” I could easily set up my exposure and observe the level of development as it progresses. That would give me a ready idea of the required development time and let me somewhat adjust for over or under exposure by pushing (extending) or pulling (limiting) the developing time.

The Changing Bag Contact Prints

Loading everything into the changing bag wasn’t too terrible. The worst part of the whole thing was being entirely unable to see if I was aligning the contact paper up with the negative. I had to resort to tracing the outside edge of one of the metal slats and slowly bringing the edge of the paper up to it. It was all the more hard as the changing bag prevented me from fully opening the lid of the contact printer. The lid fails to stay in the open position unless fully open so it was all the more difficult as a result. Patience was the key and below is the first result.

1 sec 2x40

Overexposed contact print

This first contact print (at left) was made using the decades old dual 40 watt Mazda bulbs that were installed in the contact printer when I received it. The exposure was made for one second after which it was processed in Dektol for just under 45 seconds with constant rotary agitation followed by a two minute plain water stop bath. The print was then fixed for two minutes using a 1:7 dilution of Kodafix. As may be seen the print is exceedingly overexposed having hardly any definite texture in the legs of the opilione (daddy long legs spider) and none in the body. I drastically underestimated the brightness of the lamps serving as the light source. I took into account that with the contact printer the distance from the light source was easily ten times shorter than that one would use with an enlarger and working the manufacturers data sheet describing the paper as 30 times slower than normal papers I selected a one second exposure and well, at least it was educational.

3 sec 2x15 d

Unevenly exposed contact print

With the above as a reference point I looked at what I had available in the way of medium base (medium Edison screw, or E27) bulbs. Failing to find anything less than 40 watts with a frosted or opal glass I settled on a pair of 15 watt night light sized clear bulbs—the type used in the B&L Opti-Lume illuminator. Apart from being significantly lower in wattage, the night light bulbs are much smaller physically and have a shorter total filament length. In the second print (at right) I used an exposure time of three seconds and processed the print as above. The results were better than those had in the first contact print but still quite a bit off from acceptable. The mounting hardware in the contact printer is on one side only so that two full sized bulbs have their filaments centered beneath the frosted glass. The smaller bulbs were far from centered and an internal wire partially occluded one of the bulbs.

Tray Processed Contact Prints

3 sec 2x15

Preferentially developed right corners with tray development

Resolved to get something much more like an acceptable print from the contact printer I adjusted the position of the internal wire and repeated the three second exposure with the night light bulbs and a different negative. This time I worked in my improvised darkroom and processed using Dektol and Kodafix in an open tray. I used a plain water stop in a third larger tray. Trying to be too clever for my own good in my first attempt at tray processing I sought to overcome the effect of the off center bulbs in my contact printer. I used roughly a minute and a half of total processing time and for nearly a third of that I held the side that corresponded with the bulbs out of the tray using my tongs and preferentially developed the opposite side of the print. The results as seen at left aren’t more even as a result, if anything they’re less. Rather than being more even the one side is significantly less developed overall and there’s somewhat less overall contrast. With little experience on the matter I’ll tentatively attribute this to the far lower rate of agitation I was able to achieve in the trays as compared to the constant agitation in the rotating print drum.

At this point I decided to make an attempt with my photographic enlarger. I had actually bought the enlarger on whim on the off chance that I’d one day be sufficiently enthusiastic to have a go at putting together a darkroom. The portable enlarger by Ilford isn’t able to handle a 4×5 negative for enlarging but it will work for a contact print. I began with a 15 second exposure time and processed in trays. When after the first minute of developing nothing was visibly happening with the print I started to think I must have had the print upside down in the printing frame. I tossed it in the general direction of the water tray and moved on, setting up another sheet of contact paper on my printing frame. Then I noticed something on the print that lay in the sink beside the water bath, it had developed to a limited extent! I gave it another couple minutes in the developer and started to see it a bit more clearly, at which point I put it in the water stop bath and thence into the fix. The result is below on the left. I left it in the water bath while I exposed the next attempt.


For the second print with the enlarger I used an exposure of 30 seconds, two minutes in the developer, two in the water stop, two more in the fix and then into the water bath. I ran the water from the sink into the water tray while I poured the chemistry from the trays back into their storage bottles. I made small hash marks on the masking tape labels of the bottles so that I could gauge the remaining capacity of the solution in the bottles. With that done I took the prints one by one and hung them to dry.

Large Format Photomicrography part: IX

At this point we have a few negatives, not to say that any of them are up to snuff, only that they are negatives. If one was of a mind to display one on a small light box permanently that would be the end of it, but a photographic print is much easier to display, and anyway that was the goal. The process of making a positive print from a negative is rather similar to that of producing and developing the negative to begin with, so some of this should feel a bit familiar.


The positive print is made by exposure of a sensitized paper to light which has been moderated by the negative placed between the light source and the photosensitive material. Which is to say emulsion on the paper operates chemically in the same way as that on film. Areas which are exposed to more light are darker while areas that are exposed to dimmer light by virtue of it passing through a darker area of the negative are lighter—it’s essentially a negative of a negative—we call a positive. This means that if one were to load a sheet of light sensitized paper into a film holder in place of a sheet of film one would obtain as a result a paper negative. There are specialty papers (and exotic processes that can be used with standard papers) that will produce a direct positive and so can be used to obtain a positive print directly without a negative (or a paper negative from a negative). Without using direct positive paper it’s necessary to use instead a negative.

The arrangement will be as follows: light source, negative, and then sensitized paper. The emulsion sides of both negative and paper will be facing each other. If there is an appreciable distance between the negative and the paper the resulting print will be an enlargement, if there is not the resulting print will be identical in size to the negative. In the aforementioned instance (of an identical sized negative and print) the result is called a contact print.


Much like the negative, the exposed print may be processed in trays or daylight processing containers. It will require a developer, a stop bath, and a fixative. Once again a plain water stop bath is enough for the middle step. The same fixative can be used, but it’s important to note that when prepared for use with paper most fixatives will be more dilute than when prepared for film. In the case of Kodafix, rather than the 1:3 dilution used for film, a dilution of 1:7 will be used. It is not recommended to use fixative that has been previously used with film for fixing paper or vice versa. The developer used for paper is slightly different in formulation than that used for film. The reason is owing to the significant differences in the emulsion on paper as compared to that on film. Although some developers are suitable for both film and paper there is little reason to avoid using a different developer as one will be obliged to prepare the working solutions differently and store them separately anyway.

The Kodak D76 used for film can be used to develop paper. It has little to recommend it for the task and in favor of using something with explicit documentation the Kodak standard for black & white paper, Dektol, will be used instead.


The paper used is called photographic enlarging paper, or sometimes simply photographic paper. In this modern day and age searching for photo printing paper is apt to present the searcher with only page after page of papers meant to be used with various computer printers that are specialized for printing digital photos. Apart from enlarging paper there exists a second type of sensitized paper called contact printing paper or simply contact paper. Contact paper is made specifically for that use and is exceptionally slow when compared to enlarging paper. Slow in this case means that one needs either brighter light or longer time to expose contact paper.

There are a number of further variations on paper, a few of the more commonly seen are as follows:

  • Contrast, may be graded 1, 2, 3, etc. or VC for variable contrast (multigrade)
  • Material, resin coated (RC) or fiber based (FB) most paper is RC
  • Finish, matte or glossy

Printing Method

Contact printer on the left, portable 35mm enlarger on the right.

The usual method of producing a contact print makes use of the material one is expected to have on hand in the darkroom, that is a printing frame or easel and a photographic enlarger. The enlarger is not strictly necessary, when used for contact printing it serves only as an easily controlled light source. At the time of the release of the Kodak Brownie contact prints were made with the light of the (all too seldom seen) sun just up the road in Rochester, NY. Some few years after that, in the days when medium and large format cameras were more common (a classic holiday snapshot camera would shoot postcard sized negatives on a roll of paper-backed film) a hobby photographer who didn’t have an enlarger was sure to have a contact printer.

A contact printer is a small box, roughly the size of a breadbox, containing a light source below a frosted or opal glass plate. Above the glass, where the negative is placed emulsion side up, one is most often going to find either one or two pairs of movable blades that may be positioned both to hold the negative and frame its borders. Above that is some form of hinged plate, often fronted by felt or velveteen. When pressed down firmly this levered plate activates an automatic switch. The switch will at a minimum turn on the internal light source though it most commercial produced models it will switch off an internal safelight as well. Contact printers are seldom used in the present day, not only because of the waining popular interest in large format photography but also because they are unsuitable for use with enlarging paper. With a contact printer of the type described one must use contact printing paper and an exceedingly low luminosity light source. Originally intended for use with silver chloride contact printing paper, modern contact papers are much faster, and should not be treated in the same way.


Considering the above, one might be forgiven for thinking there is no way to make a contact print without a darkroom. I propose to cram the following into my large changing bag: a box of modern contact printing paper, a contact printer loaded with a negative and outfitted with two 15 watt night light bulbs, a daylight print processor. It’s going to be awkward and cramped to say the least. Inside the closed changing bag I’ll need to remove a sheet of paper from the package (and reseal the pack). Expose the paper with the contact printer. Place the exposed paper into the daylight print tube and close it up. If I can manage all that then I can take the print tube out and process the print.

As may bee seen in the two photos above there is not exactly ample space in the changing bag. It would be comparatively easy to wait for nightfall and work in my spacious basement with the lights out and the windows curtained, even working in the broom closest would be far more spacious. Still, I’ll give it a shot just to see before I cave in and use the improvised darkroom curtains I hung around my utility sink.

Next time, prints! -K

Large Format Photomicrography part: VIII

At this point I haven’t tried to make a print. So far I’ve only gone as far as developing a couple sheets of film to end up with a 4×5 negative. In order to get a look at a negative it will need to be backlit. In the old days this meant using a light box which was really just a deep picture frame containing a light bulb (usually a tube florescent) and fronted by a piece of heavily frosted or opal glass. Light boxes are still around, old and new, with the advent of LED lighting and translucent white plastic they can be had for just a few dollars. That would be a good option if there was a need, but any tablet or LCD display that can be set up to display a solid white background will work nicely.

4x5 B&W negative of assorted diatoms

4×5 B&W negative of assorted diatoms

The Negative Visually

There it is, those are some diatoms. If one looks at the Triceratium (the big triangular one in the center) it’s obvious that a higher power objective was employed. The center of the particular diatoms test is out of focus but the majority it, by this one can tell that the objective used provides only a relatively narrow depth of view. If this was a micrograph (that is a hand drawn image of a microscopic object) then the artist could easily compensate for the narrow depth of field by making slight adjustments to the fine focus while drafting the drawing. In the modern era the fame may be accomplished with a digital photomicrograph by taking multiple identical photomicrographs in which the optical section has been slightly displaced (again with slight adjustment of the fine focus). The image is then combined digitally taking only the sharply focused portion from each to form the final product.

In looking at the negative, even with the bright backlight, it is noticeably dense. There is comparatively little difference between the lights and darks; there’s little contrast. Ideally there should be a large tonal range and significant dark, nearly opaque, areas between the diatoms. Remember, this is a negative so the bright white background of the positive print would need to have a corresponding dense black background in the negative.

4x5 B&W negative scanned as a if it were a color positive

The Scanned Negative

In order to scan a negative one must have a backlit scanner. This could be as simple taking a flatbed scanner and placing the negative on the bed, emulsion side down, with a light box on top while scanning. Fortunately, I have a backlit scanner so I don’t need to bother with such things. In the above image the B&W negative was scanned as if it were a full color positive. Scanning in this way prevents the image from being automatically value inverted by the scanner. During the scanning process the negative is placed in a negative carrier that holds it in position beneath the backlight and neatly crops the unexposed areas at the edge where the film was covered by the holder during exposure.

If anything the scanned negative looks worse than it did against the backlight. There seems to be even less contrast than before.

4x5 negative, inverted and white balanced by Photoshop

The White-Blanced Positive

Now that we’re in the world of digital photo manipulation there’s no limit to what we might do with the image. In an effort to keep things simple the above scan was simply value inverted and then Photoshop was allowed to automatically balance the white. This relatively minor manipulation didn’t increase the contrast of the image, or significantly extend the tonal range. For a first go at a 4×5 negative it’s alright but as photomicrography goes it’s a failure. Because it’s been scanned as a full color image rather than a black and white image, one could go to the small trouble of manually setting the white balance by selling the tones which should be made white, black, and a middle gray. In my mind excessive manipulation is to be avoided so I won’t bother with that.


In the Photoshopped positive we can see just how little tonal range the image has. There is strikingly little contrast and the areas that should be a pristine white are middle-of-the-road gray. Additionally, in looking at the tonal difference between the left and right hand sides of the image it’s clear that the illumination was uneven.


This negative was taken using the 20x objective of the BalPlan microscope. The illumination system was run at 9v and no special care was taken to first arrange for Köhler. Only a frosted glass filter was placed in the light path. The shutter was operated at 1/125th of a second, the fastest speed available on the B&L Integrated Camera System II. It was developed in D76 1:1 for 10 minutes under continuous agitation.


Working from the assumption that the negative is over-exposed steps will be taken to address the issue. The exposure will be lowered by drastically cutting the power of the illuminator, dropping the voltage by half to 4.5v while keeping the shutter speed the same at 1/125th of a second. Because of the significant decrease in color temperature this will cause in place of the plain frosted filter in the light path a frosted day-light glass filter will be used. In an effort to increase the contrast the negative will be processed in an undiluted solution of D76 for 12 minutes with continuous rotary agitation. According to available information a less dilute solution of developer, and longer developing time will produce a negative with more contrast.

Tray Processing

What about tray processing the negative? Arista EDU Ultra 100 B&W film is panchromatic. Panchromatic film is sensitized to all wavelengths of light meaning it would require processing in an open tray in total darkness. I don’t know that I’m up for making my first attempt at tray processing under total dark conditions. Whats that, do it with a light on then? Sure! Why not?

Fogged panchtomatic negative developed in open tray under red 7.5watt bulb

Fogged Negative

The negative above was processed in open trays under a red 7.5 watt bulb. The outlines of a few diatoms are just barely visible. Note that there is no perfectly clear unexposed area at all on the negative, not even at the edges where it was covered during exposure. When the entire negative show some level of exposure it is referred to as fogged. This is a particularly heavy example of fogging and is caused by exposure of the film to wavelength of light to which it is sensitive prior to the end of fixing.

Large Format Photomicrography part: VII

In the previous post I wrote a little about the options for processing chambers and in the post before that a little about the chemistry that does the work. Now to put that to use!

The Plan

Out of something like home team spirit I’ve decided to go with chemistry from Eastman Kodak. Nothing exotic or home-made; all these chemicals are exceedingly well understood, readily available, economical and are rather more forgiving than some of the film processing guides out there represent. In fact, most photographic chemistry is surprisingly forgiving-there’s just a drive for consistent results that pushes folks into a corner and makes many too afraid to try or to color outside the lines. Everything will be happening in a daylight color print drum.


Everything needed to process


The film I exposed earlier is Arista EDU Ultra 100 ISO 4×5 black and white. In photomicrographic use lower ISO speed is generally a better bet than higher because it will exhibit a smaller grain size and permit the use of the longer exposures that provide good contrast in this the world of photomicrography. As a rule it’s also far less expensive than ISO 20 film. Many of the older texts on photomicrographic process recommend speeds as low as ISO 7, or even 4!


I’ll use Kodak D76 as my developer and dilute the working solution 1:1 with tap water for a 10 minute processing time. Kodak D76 is a classic and versatile black and white developer that does just fine in a tray, drum, or tank. What’s more, it’s so widely available that a quick search can usually turn up an account from someone using it in exactly the way a novice is considering. There’s data and recommended processing times for just about every film out there. Guides on stand developing (where there’s no agitation during development), continuous agitation, and drum processing abound. There are dilution possibilities for almost every need and temperature recommendations for nearly any conditions.

First about dilution. One can use D76 straight and undiluted or water it down to varying degrees. As a general rule the less diluted the working solution the faster it acts on the films emulsion. However, It would graph as an asymptote and concentrating the solution beyond a certain point will not decrease the developing time simply because the developer won’t have sufficient time to act upon the films emulsion. Conversely, diluting the solution too much will not extend the processing time beyond a certain point. Put another way, if making an acetic acid and sodium bicarbonate (vinegar & baking soda) volcano one will reach a point where using less acid will not make an eruption just as one will reach a point where using more will not make the reaction continue. For the most part one will not notice a difference in film processed in straight D76 for 6 minutes or D76 1:3 for 12 minutes (some people will claim to see a huge difference but will then proceed to upload zero examples or show anyone their proof). Is there a difference? Yes, one of those is going to look slightly different but unless your pushing the limits making a poster sized enlargement from a 35mm negative and using a hand lens to examine it, you won’t notice it and there are other things that will have a much bigger impact than dilution. Pick a dilution that sounds good and go with it, this is about just seeing if I can do this not if I can make a negative without grain detectible under a hand lens!

As for temperature there is an insane amount of importance placed on it, why? Well anyone who took a chemistry class knows that temperature has a big impact on reaction time, and film processing is all about chemical reactions. The rule of thumb is hotter temperatures cause faster more complete reactions than colder temperatures which still happen but happen slower and are less complete. Some folks read that the packet of developer says processing takes 9.5 minutes at 20˚ C when diluted 1:1 and think that’s a rule. It’s not, that’s just a starting point. That’s just saying that if you always develop under those conditions you’ll always get the same results from an identical negative.

There’s all manner of water baths and water bath heaters that keep ones chemicals at just the perfect temperature for processing. Those would be handy if they were portable but for the most part modern room temperatures are depressingly stable. 20˚ C just happens to be magic, it’s the so called “room temperature” of science. So what temperature should one strive to process at? Why your own personal room temperature of course! Don’t bother with folks who put extreme emphasis on temperature, and don’t bother pointing out the fact that a thermometer that isn’t regularly calibrated can be off by as much as 5˚ C. Is getting a consistent temperature ideal? Yes. Is consistency important? Sure. Is it super-ultra-stress-about-it-so-much-you-don’t-even-try important? Hell no! There’s no need to needlessly complicate this, look up the time recommendation for D76 for whatever room temperature happens to be on site and use that.


Water water water! Distilled? No! You’re not pumping your drinking water out of a limestone cave, it’s not going to leave hard water concretions all over the place after a minute long bath! Set aside a jug or two of water and let it come to room temperature or just get good at adjusting the taps on the sink. A minute of processing in a plain water stop bath is perfect.


Kodak Fixer (Kodafix, a.k.a. Kodak Professional Fixer). Purchased as a condensed liquid it’s diluted 1:3 for the working film solution and takes from 5-10 minutes according to the bottle. I’ll go with 5 minutes. Mixed from powder it’s used 1:1 as it mixes to make the working solution rather than the condensed stock. Unlike the developer which I’ll discard after a single use (it can be saved and one can add a bit of D76R-the R is for replenisher to get it back to working strength) the fixer will be saved. A given volume of fixer has a given capacity of material that it can fix. This capacity is generally rated in some specific quantity that one will have to use to calculate for their own needs.

A volume of 3.8L of 1:3 dilution of Kodafix has a film fixing capacity of 120 rolls of 36 exposure 35mm film. A single roll of 36 exposure 35mm film has a surface area of 0.0465 m² so 120 rolls would have a surface area of 5.58m² which works out to 8649.017 in² or 432 sheets of 4×5 film, if I mix up the whole bottle. My little 4×5 print drum takes not quite 50ml of solution. So 432/3800=x/50 meaning I can mix up 50ml and use it for 5 and a half sheets (5.68 sheets of 4×5 film for every 16.7ml of condensed stock solution).

Fixer should be replaced when it takes twice the time to clear undeveloped film that it took when it was fresh. What does that mean exactly? Take a strip of film cut from a fully exposed but undeveloped sheet (or the leader cut from a shot but unprocessed roll of 35mm) and drop it into your fresh working solution of fixer. Time how long that piece of film takes to turn clear, and that’s the clearing time. The fixing time is double the clearing time. After you’ve processed a whole bunch of film test it again for the clearing time. It’ll be longer than it was when you started but probably not double the original clearing time. Double the new clearing time to get your new (slightly longer) fixing time and keep right on going.


After fixing it’s time to wash it five minutes or so in a plain water rinse is all that’s needed for that. If someone does happen to have particularly hard water, or a very humid environment it can be a good idea to spend $20.00 on a bottle of something like Kodak Photo Flo. A couple of drops in the final water wash will help dry the film without streaks or water-spots. It handle necessary though and is really just a way to sell photography people a surfactant, Worth it though, if your having troubles on that end of things.


  1. Load a sheet of exposed 4×5 into print drum inside changing bag
  2. From stock solution of D76 make 50ml of working 1:1 dilution in a beaker (25ml D76 & 25ml tap water)
  3. From concentrated Kodafix make 50ml of working 1:3 dilution in a second beaker (17ml Kodafix & 33ml tap water)
  4. Pour working solution of D76 into drum
  5. Turn drum on it’s side to release developer and roll drum back and forth on table for 9.5 minutes
  6. Hold drum upright over sink to drain
  7. Turn on the sink taps and let the drums internal cup fill with water, release the water roll it around briefly before allowing the water to drain, repeat as many times as possible for 1 minute
  8. Drain water from drum
  9. Pour working solution of Kodafix into drum
  10. Turn drum on it’s side to release developer and roll drum back and forth on table for 5 minutes
  11. Hold drum upright over sink to drain
  12. Remove funnel cap (and cup) from drum and throughly rinse film under tap water at sink for 5 minutes (alternatively place film in high volume water bath for 5 minutes)
  13. Hang film to dry

Timed Audio Guide

The above process is nice if you can remember it or read along as you go. For anyone who’s going to be giving it a go in a darkroom with trays (or anyone who just want’s to hear me ad-lib the whole process) I’ve created a timed audio file. You’ll need to start with the working solutions measured out if your using the file with a drum or tank, or already in trays if your going that route. Everyones phone has a voice recorder theses days so you can of course make your own timed audio guide if you’re using a different bunch of chemistry, film, or temperature conditions. That lovely busy-bee sound you hear is me being lazy and using a motor base to do the rolling of the drum.

Play it in your browser above or here’s the link to download as an m4a, and here’s the link to download as an mp3.

Next time: scans of some negatives and notes on my attempts at tray processing. -K

Large Format Photomicrography part: VI

Apart from the chemistry, (and it’s worth knowing that’s the lingo) in order to do the actual processing one will need something to do the processing in. In keeping with the philosophy that the best material is worthless if one hasn’t got it I’ll begin with something that’s likely to be on hand, and move forward from there.


Film processing tanks

Tray Developing

No need to rush out and order some fancy perfectly size plastic or enamel developing tray, a cheap plastic storage box or even a Chinese take out container can serve as a processing vessel. If going this route one will need three trays to make things easy, and a darkroom. Don’t discount this as an option if a darkroom isn’t available. Working at night can go a long way to solving most of the troubles of setting one up and a roll of aluminum foil and some masking take can handle the rest. There isn’t really a need for a safe-light but it goes a long way to making things easier. There’s no need to buy a fancy or expensive safelight either, a can of red spray paint can transform a standard lightbulb. The ubiquitous smart-phone displaying a full screen solid red picture works just as well, it’s a little safer to just adjust the display settings for a deep red tint though.

One will have to figure out the volume of chemistry to get a centimeter or so of depth in the trays. Additionally, a pair of tongs or rubber gloves will need to be used for shuffling the film about in the tray and moving it from one to the other. Some photographers wouldn’t touch tray processing for anything and others wouldn’t dream of doing anything else. It can be pretty daunting to start with tray processing and the need for a darkroom can turn a great many people off.

Darkroom Film Tank

If trays aren’t to ones liking, a film tank will do. These are basically deep open tanks into which one dips the film after loading it into a specialized hanger sized exactly for a sheet of film. Darkroom tanks require significantly more chemistry than trays but have a smaller footprint and due to the lower surface area they expose the chemistry stays fresh a bit longer than an equal volume in a shallow tray-great news if you’re running a school darkroom on a shoestring. The hangers keep the individual sheets of film from touching and run a dollar or two a piece on the second hand market.

Daylight Film Tank

Particularly dexterous photographers can process as many as 10 sheets of film in trays at once without any issues, other folks struggle with scratches from a single sheet. Just as one can process 36 exposures of 35mm film at once in full daylight provided it’s been loaded in the dark, so can one processes a number of sheets of 4×5 in a daylight cut film tank. There are a number of vintage and modern options when it comes to these sorts of tanks and they run the gamut as far as quality and cost goes.

Downsides to daylight cut film tanks abound. The vintage ones are inexpensive but leak like nothing else and may be rather incomplete. They require a heroic volume of chemistry, many take 2 liters or more. New systems, such as the Combiplan, tend to cost a ridiculous amount for what they are but don’t leak and use far less chemistry. All of these will be a struggle for anyone working in even the largest changing bags. Still the old tanks from Yankee hold 10 sheets and only run $20.00 or so second hand, just don’t make the mistake of shaking them all around like one would do with a 35mm tank.

Daylight Print Drum

Ostensibly made for processing prints, daylight print drums are available in a range of sizes, including 4×5. The small black tube in the photo above from Ilford Cibachrome is only a bit larger than an empty roll of toilet tissue and can handle one sheet of film at a time. Larger drums can handle multiple sheets and different brands have different takes on the internals with channels and grooves to keep multiple sheets from overlapping or knocking around. As new old stock one can expect to pay $10.00 or so (including pack and post). Daylight print drums use very little chemistry, are inexpensive, and can be quite convenient provided one doesn’t need to process a couple dozen films in an hour.

At their most basic processing drums of this sort are a hollow tube with a light-tight drain on on side and a light tight funnel and cup combo on the other. Hold the drum vertical and pour the chemistry in to the funnel where it gets caught in the internal cup. Tilt it onto it’s side and roll it back and forth on a table to start processing, or spring for a motor base that will rotate it at the push of a button. A couple hardware store casters screwed to a scrap of wood will do for a manual roller base if space is tight. Flip it on it’s end to drain the chemistry and move on to the next step.

Daylight Cut Film Drums and Tanks

There’s a whole range of brands out there that can handle cut films. Some of them work more like the 35mm daylight film tanks that look and work pretty much like a cocktail shaker and others look more like a daylight print drum. They are all hopeless overpriced for anyone who doesn’t just want to dip a toe in and test the water. Get ready to shell out $300.00 or so just for a Jobo tank (never mind the film insert) or any of a dozen exotic film holders that will fit in a standard three reel 35mm film tank.

The Jobo’s are a breeze to load up and use while most of the insanity that they call 4×5 “reels” are variations on the trials of Hercules, hard enough in the light and true madness in the dark. They require a motor base in most cases or a bit more thought out placement of casters for manual rolling because of their more complex construction-the chemistry might not be evenly distributed if it’s just rolled on a table.

Daylight Roll Film Tanks

Grab a plastic two reel Paterson super system 4 and search the web for “4×5 taco method”. It’s easy, it works, it’s affordable, and if one picks up two multi-format plastic reels with it one can process their own 35mm and 120 roll film too. This is the way to go for anyone who isn’t adventurous enough for trays and is to wary (or just unlucky) on the second hand market. Anyone lucky enough to have an area photography store can pick up the gear for this new in store while everyone else can support the few stores still out there by buying it new from a website and having it shipped.


There is an option out there for anyone who needs one. The goal here is just to get one print so the daylight print drum is the way to go, no darkroom required and it’s small enough to fit with room to spare even in a small changing bag.

Don’t get discouraged if you were hoping to see me flub an attempt at tray processing! I just hung a few black sheets around my basement utility sink and I’ll be flailing around in there as well!