When Books Aren’t Books

I write today as an amateur in critique of a professional, so don’t take any harsh words as gospel; read the work in question, form ones own opinion. There are certain and topics that are taxing for any writer who writes professionally, few would contest that statement unless keen to make some grandiose claim. Who hasn’t held up some literary familiar and declared that their words might make an history of drying paint lively? By that same token one should accept that there are particular subjects that in the mind of one reader or another will be given worth in the face of poor writing for no other reason than a private affection for the subject. Suffice that there are great writers and difficult topics, as much as there are terrible writers and endearing subjects.

Carl Zimmer is a great writer. The bacterium Escherichia coli is a difficult yet endearing subject topic. Microcosm, Zimmer’s subtitled E. coli and the New Science of Life, is a wretched book. It’s terrible and doesn’t even attempt to break from the failings of a previous work, Parasite Rex, that I wont review here.

I really love a good hard-science book, popular science not so much, and then more because the parts of greatest interest are often forced into the background and called dull. E. coli has a special place in my heart, a pedestal if you will, so maybe I’m a little harsh when I think it hasn’t been done justice. One has to understand that without E. coli, there would be no modern genetics, no DNA, no effective treatment for diabetics, no Round-up-Ready crops. Zimmer touches on this but really doesn’t do enough to drive it home in my opinion. There’s a reason he doesn’t, but more about that later. If one claims that more is known about E. coli than any other group of living things that’s an understatement. The depth and breadth of knowledge, the practical applications, the gestalt of E. coli is enormously well rounded. It’s mentioned in the book but far less is made of it that I would have liked. Now, clearly, I’m not the indented audience. This is a book for a high-school freshman who needs to write a report for biology, a book for someone who wants to give a speech for public speaking class and needs a topic that’ll impress the teacher.

If one were to pick up the book, expressly for the purpose of reading a chapter or two and putting out a quick review, or gleaning an anecdote, Microcosm would justly get a glowing endorsement. Even I would sing the books praises, if I hadn’t read the whole thing. How could this be the case? How could a book about a subject near and dear, written by an eloquent and deliberate author be fabulous in piecemeal and foul as a whole?

Zimmer is better suited to articles. The whole thing, start to finish, could be chopped up and scattered across a few dozen periodicals to great effect. Every chapter is less a part of a coherent whole and more a variation of a theme, each one flows well in it’s way but lends a strange syncopated rhythm to the book in which it resides. What one one looks for in a cohesive work is not a collection of articles each with their own clear beginning middle and end. The editor of the dust jacket copy seems all too aware of the books failing and boldly denies it by claiming the work tells “the story of the one species on Earth that science knows best…”. Except the book doesn’t tell the story, it tells disjointed parts of it. As if being pressed between the same covers gives the chapters some sort of narrative quality.

My recommendation read a chapter at a time with a few months between each. It’s better that way I imagine, and it might not be so off-putting then. This is a good choice to buy used for a few cents and pass on to a friend or library book-sale later on. But hey, at least the endnotes are nice signposts to follow. Pick up a copy from AbeBooks or Amazon if you will but for goodness sake don’t read it as you would a book. Take it as a magazine.

New Section!

So I’ve spent a rainy week-end scanning, processing, and uploading quite a few Bausch & Lomb documents I’ve got in my collection. These documents have been placed on their own page accessible via a link at the top of this page. The offerings run the gamut from catalogues and price lists, too reference and instruction manuals. Some of these manuals are no doubt already out there on the web but many are not available in any other place that I am aware of. It is my hope that by making these resources available I will in some small way contribute to others ability to get the most from their microscopes.

I have made an effort to provide these materials in a convenient and serviceable format. The color pdf files provided are hardly archival quality but they are I believe of a character that will contribute to the ongoing availability of the information contained therein. In most instances I have included all pages-notably those which are blank-so that anyone wishing to print the documents may assemble the pages accordingly and do so. Where loose inserts are associated with the main document they are included as additional pages at the end of the file.

I would hope that other collectors, hobbyists, or professionals who have similar materials in their possessions make an effort to make those materials more widely available. Please feel free to download, share, and enjoy these materials however you wish. If you get some use from them, I’ll consider my time well spent.

Mosquitos Part IV: Techniques

The images in the  previous mosquito instalment were made with the use of a Greenough microscope. Comparatively large specimens like mosquito larvae are well suited for use with a Greenough style binocular. This type of microscope is functionally, two monocular microscopes positioned close enough that each objective may observe the same specimen and the unique image of each be seen by the eye above each ocular. The wide field of view and exceptional depth of focus provided by the fully parallel optical paths is generally better than can can be had by the use of any single objective microscope.

For people without access to a stereo microscope larve may be observed with the lowest power objective available. In many cases (as in the inexpensive Bausch & Lomb ST used for this post) this will prove to be the 10x objective which will regretably not afford viewing the entire larvae. If the objective is divisible as in the commonly found B&L 10x then remove the front element, otherwise put the lowest power on hand in place. Use a low-power or wide-filed ocular where available.

It’s certainly arguable that for live viewing one really needs a low power stereo or disecting microscope, but a steady hand will do. Let’s work from the assumption that all that’s on hand is the B&L ST (Standard Teaching) microscope, plain glass slips and square 22mm coverslips. Be aware that the 10x objective and 10X ocular combination give a very limited field of view. A third instar larvae will span the visible field thrice over, and that’s just the first problem!

Mosquito larvae are thick, too thick to just take one up in an eyedropper, deposit it on the slip and cary on. The weight of the coverglass would crush and distort the larvae sevearly and it would tend to slope away from the head of the larvae presenting the real risk of leaving that portion high and dry while surface tension pulls the water away towards tail end. Something is needed to support the coverglass (apart from the larvae itself). Specially made well slips would work for smaller larvae, but they’re expensive and unnessicary; all that’s required is something to support the coverglass. Grease and wax are both good options, but wax is a touch more difficult. Don’t worry about using up that expensive high-density vacuum great used for groud glass joints, plain old white petroleum (Vaseline) will do nicely.


  1. Smear a small bit on the heal of one palm, make the spot roughly equal in size to that of the coverglass to be used.
  2. Cafefully but firmly draw one edge of the coverglass over the greased spot on the heal of your hand. Use a bit of pressure (as if you were trying to wipe up the grease, which you are) but be mindfull of breaking the coverglass.
  3. Repeat the manouver with the opposite edge, carefull to use the same face of the coverglass.

The grease will form two ridges, more than enough to support the coverglass.

  1. Soft dental wax is best but common parrafin wax will work as well.
  2. Warm a few cubic millimeters by rolling it betwix index and thumb.
  3. Press the warmed wax onto the far side (make believe there’s a specimen upon the slip and keep well away from it) of a clean slip as hard as you dare without breaking the slip.
  4. Use a scalple to cut away two thirds of the wax and again roll and press the wax to the slip. Choose a point roughly 10mm distant to form the second point of a triangle with the first bit of wax.
  5. Cut away one half the wax and again roll and press, completeing the triangle.

The wax supports are a good deal harder to get thin enough for most uses but can be a good option for anyone overly worried of breaking a few covers as they get a hang of the grease method.

Another Entry Level Microscope

The Bausch & Lomb Standard Teaching (hereafter ST) microscope is hardly the finest instrument one may buy, though it is a true and reliable stand. Carrying on the great tradition of simple and rugged construction begun with consumer microscopes designed for both student and arm-chair scientist the ST is descended from the FL (For Learning) of decades prior. For a look at a far earlier version see this previous post.
Immediately recognizable by its B&L slate-gray enamel one will always know an ST or FL upon sight. Telling one from the other is simple as well, meerly glance at the fine focus. If it’s located at the inclination joint it’s of the ST line. A fine focus on the arm above the joint is indicative of the FL line. There are a number of less immediate means of identification, the contruction of the foot, the mechanics of the coarse focus, the presence or abscence of a focusing stop, and the finish of the stage, to name a few. This is about the ST though, so on with that.

As with most B&L lines there are more variations on the basic ST stand than one would expect ranging through optical components to convience features. Apart from the regular ST there is also the Inclined model (IST) which carries a two piece body tube with prisim adjusted angled ocular tube. It’s called the ST for a reason though and the versions that could be had ranged from the very modest too three objective, condenser equipped models with mechanical stages suitable for entry level bacteriology, and other oil-immersion work. The most advanced models made use of the same objectives as the flagship Dynoptic line, their compromise was the slide focusing condenser. A slide focus condenser is not to be sneared at, but when used with an external illuminator one may be hard pressed to secure Khler illumination. Pressing a simple substage to its limits and restricting the user to a monocular system the advanced end of the spectrum is not where the ST shines.

At the lower end one finds the ST in its element. The not quite there, complecated yet inexpensive condenser set up is replaced with a simple rotaing disct diaphragm and either concave mirror or Optilume lamp. It’s worth mentioning that B&L with the ST line once more holds to the concave mirror only (for condenserless substages). The Optilume is well suited too, offering a bright field of view and on/off simplicity.
Perhaps the most laudable feature is one that more advanced users will never make use of. The ST microscopes take seriously the inexpert focusing of the student or novice microscopist. However much one drives home the importance of the microscopists obiesence there are those who will insist upon obtaining coarse focuse with eye at the lens, all such marksmen should be forced into carears as snipers. The ST line repesents the first standard Prefocusing Gage from B&L.

This simple addition has doubtless saved more than a few slides from the hazards of crashing objectives. The Prefocusing Gage is a humble projection from the body tube through which a theaded hole has been bored. A hexagonal set screw is fitted through the hole and a smaller flat headed set screw penetrates from the side to lock it in place. In use one need only to place a slide between the gauge and arm and gently rack down the coarse focus until contact is made. Removing the slide to the stage one will then find the specimen in rough focus and need only touch the fine focus knob until examination is complete. As with most every microscope of quality the objectives are parfocal so the utility of such a device should be obvious.

If one has other stands at their disposal one may see quickly where costs have been saved on the ST microscoscopes. The fine focus mechanism is mechanically identical to that of the Dynoptic but there is not graduation upon the adjustment. The body tube has been cast from a single mould so that nosepiece and ocular tube are permanently in place. The stage likewise is cast as one with it’s mount and may not be exchanged without likewise replacing the entire substage.

For those people out there who have and use an ST or IST here are some useful measurements from the manual (I’ll get around to uploading a scanned copy of it sometime).

First the table of approximate equivalent size of the pointer in the plane of the specimen:

Then the table of magnifications with the same 10x Huygenian eyepiece:

Mosquitoes Part II: Larval Breeder

Ask someone where to find mosquitoes and they’ll likely answer with some clever little quip. “On my patio” or “wherever I hang my hammock” they might reply, doubtless referring to the bites of adult female mosquitoes out for a blood meal. When asked where to find mosquitoes larvae these same comedians may be stumped. Finding mosquito larvae in areas where they are endemic is surprisingly simple, just find the water.

Look for standing swatter, without fish, even tiny ones. Don’t think just because the garden lacks a pond there aren’t mosquitoes breeding surprisingly close to home. A bloodbath, a puddle beneath the garden spigot, the terracotta base of a potted plant, all may be home to scores of squirming mosquito larvae. Even if it hasn’t rained in weeks one might find that condensation from a window air conditioner has built up in a clogged rain gutter to provide a tiny oasis for breeding mosquitoes.

During their aquatic stage larval mosquitoes eat by filter feeding. They’ll feed on aquatic bacteria, fungi, algae, and nearly anything else that they can strain out of their battery habitat. However clear that water in the dogs bowl in the garden one may rest assured it contains enough microscopic food for the larvae to developers so don’t think it isn’t worth checking. Additionally don’t overlook a potentially rich breeding sight simple because it doesn’t seem as if it could contain enough water. The cup-like bases of numerous plants accumulate water in which a number of mosquito species may breed, and the Asian Tiger mosquito has been introduced to the United States via the scant water held in automobile tires shipped from overseas.

Housing the larvae is really a simple matter. Any wide-mouth clear vessel will do in a pinch, but a special breeding vessel is simple to make and removes the difficulty of capturing adults without them escaping.

Gather the supplies:

  • 2 identical plastic containers with lids.
  • 1 fine mesh screen (just a few cm square)
  • 1 99 cent store plastic funnel
  • Hot glue or silicone caulking
  1. Cut a hole in the bottom of one plastic vessel. Make it as big a hole as you can while still leaving enough flat surface for gluing the screening.
  2. Glue the screening over the hole and set aside. This part will be the top of the breeding chamber.
  3. Cut out the center of the two lids, leaving a small amount (2-4mms, 1/8-3/16in)of flat surface.
  4. Cut the top (inlet) of the funnel so that it is of a size to rest on the rim remaining of the lid.
  5. Cut the bottom (outlet) of the funnel to remove the stem. If the remaining opening is smaller than a flying mosquito, cut it larger (about 1cm, 3/8in).
  6. Place on lid right-side-up on the work area and place the up-side-down funnel upon that. Connect the two using hot glue or contact cement.
  7. Fit the second lid up-side-down over the funnel cone and glue the whole together.

With the whole thing assembled and the glue dry the only thing remaining is to place the collected water and larvae inside and wait.The vessel with the t is the top of the breeder, while the unaltered vessel is the reservoir. When placed in a Northern window (for those in that hemisphere) the microorganisms on which the larvae feed will thrive and in a matter of days develop into adults. The adults will fly up into the cone of the funnel and become stuck in the upper chamber. At this point the upper chamber and cone can be uncoupled from the bottom and briefly frozen to stun the adults for transfer to a suitable killing vessel.


Large vessel in Northern exposure window.

I like to use containers that have a bit of a recessed lid, the inexpensive plastic food storage canisters sold at most grocery stores work great. With those sorts of lids it’s important to fill in the area where the funnel passes through the second lid so that there is no area in which adults may become stuck. This sort of breeding vessel is suitable for many aquatic dipterans. In the case of mosquitoes it could be a good idea to first paint the top half (when assembled) of the vented vessel black. A number of mosquitoes are known to be attracted to black preferentially and it can serve to speed their transition through the funnel trap into the top vessel. If a large number of breeders are going to be assembled it could be a good idea to purchase a large roll of fine, stiff, mesh. Using the mesh one can form a significant number of funnel traps at exceedingly little expense.

Mosquitoes Part I: The Zika Vector

For residents of the United States it’s been hard to ignore the alarmist “news” about the Zika virus this spring and summer. Like a number of tropical diseases it’s mosquito borne and the particular vector is Aedes aegypti.


Zika? No! This is a male and it’s the wrong species!

Individuals in northern areas may feel somewhat reassured by the fact that vector insect population data from the Centers for Disease Control shows only a scant few places where A. aegypti have become established. Well… that information is out of date at best and flat out wrong at worst. After all, this is the yellow fever mosquito we’re dealing with. Remember yellow fever, they used to all it the American plague, no one should be surprised that this particular mosquito is all over the place in North America.

Want some specific location data? I’ve been sampling populations in my area (at two locations one 30 miles East of Rochester, NY, the other a further 10 miles East of that) for a few years now just for fun. Wonder of wonder, there’s several species around, including A. ageypti. What’s better than my word? Your own hard data, lest we give in to the complacency of ignorance lets find out what mosquitoes we have in our own backyards!

I should point out that one doesn’t need a microscope to identify mosquito larvae, nymphs, or adults; but in each stage of development they’re wonderful subjects for the microscopist. Larvae (eggs too if you find them) and nymphs make wonderful live or preserved specimens. Newly killed adults may be examined nicely in temporary mounts. Permanent whole mounts in resinous media are only a little more involved. Unlike with other flying insect species, prepared slides of the mosquito life cycle are widely available, but they’re so simple to do at home anyone who isn’t in a mad rush should really consider it.

Obviously one will first need to get a quantity of mosquitoes. Before rushing outdoors to wait for a hungry little vampire in search of a blood meal to land on an arm (which is an option for the impatient) consider: a feeding mosquito will be female, will probably be damaged during capture, and must be suffered to bite. It’s a great deal simpler to collect mosquitoes with a live trap (for adults) or a turkey-baster (for larvae and nymphs). In fact, anyone with an empty jar can run out and collect hundreds of mosquitoes in an few hours, if they consider the aquatic larvae sufficient; and they are! Those larvae will become adults in short order.

This isn’t a series about how to prepare permanent mounts of the specimens, this is about how to get them, and observe them in temporary mounts. Some other time we’ll get into permanent mounts of mosquitoes for now the goal will be simple and three-fold:

  1. Locate a likely source of mosquito larvae, and collect some.
  2. House those larvae in a vessel in which they may mature through all stages of development.
  3. Sample and observe specimens from that vessel representing each stage.

Hey check it out I can be topical! -K

B&L Photomicrographic Apparatus VI: AX-1

The final development, before the microscope camera went from still-chemical photography to motion/still digital photography is equal parts groundbreaking and re-purposing. Like the System II the new version maintained the same basic layout and universality, it was made compatible with all the camera backs of the System II. It retained the focusing knob (to date all those known are marked at 3x, 5x, 7.5x, and 10x) but departed from the consumer camera style shutter speed selector and remote shutter release; the new camera was automated.

Since the earliest days of photomicrography it was just assumed the the microscopist would be the darkroom technician as well. Those seeking to record images of their work were expected to practice and understand the skills needed not only for obtaining a clear, useful image at the eyepiece, but at the imaging surface of their camera, and final media as well. Books from the golden age are filled with detailed information on how to properly compose and sequentially expose test images. Entire chapters in books on general microscopy are devoted to the proper taking of photomicrographs. In detailed texts on photomicrography extensive chapters describe the best way to salvage (and in future avoid) over or under-exposed films. The AX-1 changed all that.


For a generation that grew up (or like the author, grew complacent) with the automatic exposure and aperture cameras of the “Kodak Moment” era, the AX-1 no doubt seems unduly complex. A two variable analog meter, no less than six buttons-two thirds of which light, two additional indicator lights, four tumbler set values, all run off of a grounded AC plug in a package the size of a lunch box and weight of a bag of sugar is understandably daunting. The space-hogging controller is only half the unit and like it’s counterpart is entirely useless without the automatic shutter assembly camera. As previously mentioned it is superficially like the System II but in place of a release bears a nine pin cable and connector that conducts light data from its integrated sensor to the control box and carries the exposure signals back. A small electromagnet actuates the simple shutter, and the photo-sensor is positioned to one side of a right angle partially silvered reflector.

To allow for the proper calculation of required exposure one must set a few parameters on the controller before beginning. Film speed is dialed in using A.S.A. units and it’s worth noting that the controller uses the 1960 revision (from what I can tell in use, I’ve not been able to locate anything in the documentation). One must also select the desired reciprocity, which is best left set to “OFF” for most uses. Setting the level of magnification to the nearest value marked on the shutter informs the photo-sensor of the general range of light intensity and is vital for achieving accurate exposure times and light levels. One may also set the desired exposure to a fixed value darker or lighter than the calculated exposure which may be useful for those who want to avoid pushing or pulling during processing.

Once properly set up the user is ready to set the focus of the shutter assembly, load film, power up and begin taking pictures at the push of a button! Imagine, no need to shoot and develop costly trial exposures or to calculate required shutter speeds/exposure times by hand with based on light meter readings. The device can serve as a light meter only and exposure may be done manually at the press of a button. The controller can be put on a separate table and the only source of vibration limited to the movement of the shutter itself. That’s probably the chief point in the AX-1’s favor these days, but it may still be worth while for those more willing to give it the space than to learn about shutter speeds.



As I’m sure someone (apart from myself) has noticed posts have been becoming increasingly wide-spaced. In no small part this has been due to the continuing demands upon my time made by life. Unwilling to part with time spent at the lens I apologies that sharing this enjoyment has been the aspect to suffer. An inexpensive recent acquisition may help in correcting the issue, and it is the device used to compose this post.

The new tool is a strange thing, the Alphasmart Neo2. Little more than a keyboard with monochrome liquid crystal display it has the valuable feature of a year long battery life (honestly 700 hours is the claim) and instant on/off with no need for tedious file-management. It’s felt that this will enable the composition of posts without the need for booting up or toting around the laptop. If need be I can even transfer the text directly to the WordPress application on my cellular telephone. Tragically, editing is an impossible task for this device but composition is a breeze and exceedingly convenient. In future, if the device proves an asset, posts may be less orderly but no less verbose-I’ve chosen to embrace my tendency to wordiness.

On a final note, to the woman who attempted to contact me with a question concerning the sort of microscope used in the 40’s; the email address you provided was not apparently accurately typed and my response was bounced back. If you are still at a loss you know how to reach me.


B&L Photomicrographic Apparatus V: System II

A Re-design

The System II represents a fundamental change in B&L integrated photomicrographic cameras. Sleeker than the early DynaZoom camera but far more substantial than the later versions, the System II is a step back to the design principles that required a focusing system. It was necessary for the System II to feature a focusing lens system because the unit was intended to be a new universal device for all (camera ready) professional B&L lines, including the earlier DynaZoom/DynOptic lines. Despite maintaining the compatibility of the system with earlier stands, once more the camera backs required are not compatible with previous versions (although they do come in all previous formats).

New Features

The opticians behind the System II seemingly asked themselves ‘how can we make this the last camera a microscopist will need?’ and set about answering it. The systems chief major departure is the coupler, specifically its diameter. At 7/8ths it’s a full quarter inch larger than the previous model DynaZoom camera, and a return to the large size used with focusing DynaZoom cameras. Care was also taken in the design of the coupler, it was made to be removed and a number of versions of the coupler were made, some making allowance for the use of a manual exposure meter.

Once more the camera back attachment point was redesigned. The new male dovetail fitting was made a bit smaller than those used previously and unlike previous models did not feature an alignment screw that required the female dovetail camera back be fixed in relation to the camera. Additionally, where earlier camera backs used two thumb screws the new versions used only one; making it a simple thing to orient the photosensitive surface however one wished without being forced to suffer an inconvenient shutter release or winder position.

Couplers and Camera Backs

Three couplers are known of: the silver Bal-Coated male dovetail, the black lens-less male dovetail, and the eyepiece mount. The silver dovetail makes good use of a Bal-Coated lens to eliminate errant reflection which can prove frustrating with uncoated optics and both it and the black dovetail carry a small slot in the dovetail that mates with the camera. This slot may be turned to align with a similar slot in the System II or turned so as to exclude all light. The purpose of the slot is to permit the insertion of the B&L Cat. # 421240 exposure meters sensor.


The versions are discrete rather than explicit, which is to say there is not any particular model number to distinguish them that is official but they are readily identifiable. One sort is focusable from below 3x to over 10x. On these models only four magnifications are marked: 3x, 5x, 7.5x, and 10x. Two versions of this sort are known, one having an all black shutter speed selector and the other having a silver ring. An additional version, and perhaps more desirable (if less common) one has the same range but is marked in one unit increments from 0-25x with every fifth mark being numbered.


Apart from the previously mentioned camera backs a number of accessories were produced. Special viewfinder adapter plates and eyepieces were available for the various camera backs. It should be noted that these eyepieces were not the film area viewfinder eyepieces that would show the field that would be covered by various popular film sizes. Extension tubes were also available that would extend the distance between the final lens element of the shutter assembly and the camera back. Tubes were made in 2.5x and 5x lengths were produced and could be used in various combinations where special needs required.


∗It should be noted that the connection to the shutter in all cases is a male dovetail and the designation here refers to the connection to the microscope photo-port.

†I’ve seen one in use during the course of a museum visit although I’d be hard pressed to say if it were an actually B&L item or the product of a machinist and a tight budget.